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Abstract

In the present paper, which is a sequel to [20, 4, 12], we investigate fur-
ther the structure theory of quasi-MV algebras and

√
′quasi-MV algebras.

In particular: we provide a new representation of arbitrary
√

′qMV al-
gebras in terms of

√
′qMV algebras arising out of their MV* term sub-

reducts of regular elements; we investigate in greater detail the structure
of the lattice of

√
′qMV varieties, proving that it is uncountable, pro-

viding equational bases for some of its members, as well as analysing a
number of slices of special interest; we show that the variety of

√
′qMV

algebras has the amalgamation property; we provide an axiomatisation of
the 1-assertional logic of

√
′qMV algebras; lastly, we reconsider the corre-

spondence between Cartesian
√

′qMV algebras and a category of Abelian
lattice-ordered groups with operators first addressed in [10].

1 Introduction

Quasi-MV algebras are generalisations of MV algebras that have been intro-
duced in [16] and investigated over the past few years. The original motivation
for their study arises in connection with quantum computation; more precisely,
as a result of the attempt to provide a convenient abstraction of the algebra
over the set of all density operators of the Hilbert space C2, endowed with a
suitable stock of quantum logical gates. Quite independently of this aspect,
however, qMV algebras present several, purely algebraic, motives of interest
within the frameworks of quasi-subtractive varieties [15] and of the subdirect
decomposition theory for varieties [13].

√
′quasi-MV algebras (for short,

√
′qMV

algebras) were introduced as term expansions of qMV algebras by an operation
of square root of the negation [9]. The above referenced papers contain the ba-
sics of the structure theory for these varieties, including appropriate standard
completeness theorems w.r.t. the algebras over the complex numbers which
constituted the starting point of the whole research project. In the subsequent
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papers [20, 4, 10, 12, 14] the algebraic properties of qMV algebras and
√
′qMV

algebras were investigated in greater detail.
The present paper continues the series initiated with [20, 4, 12] by gathering

some more results of the same kind. Actually, the main focus of the present
article is on

√
′qMV algebras alone, but we preferred to keep the same title

as in the previous members of the series to underscore the resemblance of the
underlying approaches and themes. In particular, in § 2 we provide a new
representation of arbitrary

√
′qMV algebras in terms of

√
′qMV algebras arising

out of their MV* term subreducts of regular elements. In § 3 we investigate in
greater detail the structure of the lattice of

√
′qMV varieties, explicitly proving

for the first time that it is uncountable, providing equational bases for some of its
members, as well as analysing a number of slices of special interest. § 4 amounts
to a short note to the effect that the whole variety of

√
′qMV algebras has the

amalgamation property. § 5 gives an axiomatisation of the 1-assertional logic
of
√
′qMV algebras. Finally, in § 6 we reconsider the correspondence between

Cartesian
√
′qMV algebras and a category of Abelian lattice-ordered groups

with operators first addressed in [10], establishing a few additional results on
that score.

With an eye to shrinking the paper down to an acceptable length, we as-
sume familiarity with both the content and the notation of the above-referenced
papers. In particular, we will abide by the conventions already adopted in the
previous papers of the series, with the following exception: a congruence θ of a√
′qMV algebra A is called Cartesian (flat) iff A/θ is Cartesian (flat). We also

make a note once and for all of the following result (a sort of restricted Jónsson’s
Lemma for

√
′qMV), which will be repeatedly used in the sequel without special

mention:

Lemma 1 [12] Let K be a class of
√
′ qMV algebras. If A ∈ V (K) is a subdi-

rectly irreducible Cartesian algebra, then A ∈ HSPU (K).

As to the rest, except where indicated otherwise, we keep to the termino-
logical and notational conventions typically adopted in universal algebra and
abstract algebraic logic.

2 A representation theorem for
√
′qMV algebras

The paper [9] contains two representation theorems for
√
′qMV algebras. The

first one, restricted to Cartesian algebras, says that every Cartesian
√
′qMV

algebra is a subalgebra of the pair algebra over its own MV* term subreduct1

1By “MV* algebras” we mean expansions of MV algebras by an additional constant k,
satisfying the axiom k ≈ k′. This variety has been investigated by Lewin and his colleagues
[17], who proved that: i) the category of such algebras is equivalent to the category of MV
algebras; ii) the variety itself is generated as a quasivariety by the standard algebra over the
[0, 1] interval. Although e.g. all nontrivial Boolean algebras are ruled out by this definition, in
virtue of the above-mentioned results the two concepts can be considered, for many purposes,
interchangeable.
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of regular elements. According to the second theorem, which on the other
hand applies to all

√
′qMV algebras, a generic

√
′qMV algebra is a subdirect

product of a Cartesian algebra and a flat algebra. Both results are flawed by
a common shortcoming: the representation mappings are embeddings, rather
than isomorphisms. It would be desirable to amend this defect and characterise√
′qMV algebras along the lines of the analogous theorem for qMV algebras to

be found in [4], where a generic qMV algebra is proved isomorphic to a qMV
algebra arising out of an MV algebra with additional labels. This much will be
accomplished in the present section.

Definition 2 Let A be an MV* algebra. A numbered MV* algebra over A is
an ordered quintuple A = 〈A, γ, κ1, κ2, κ3〉, where γ is a cardinal function with
domain A2 and κ1, κ2, κ3 are cardinals s.t.: 1) κ1 + κ2 + κ3 = γ

(
kA, kA

)
; 2) if

κ2 is a natural number, then it is even; 3) if κ3 is a natural number, then it is
a multiple of 4.

If one thinks of a
√
′qMV algebra as a subalgebra of a pair algebra ℘ (A) over

an MV* algebra (possibly) along with an additional number of elements corre-
sponding to non-singleton λ-cosets, then, intuitively, the function γ assigns to
every member 〈a, b〉 the cardinality of 〈a, b〉 /λ, while κ1, κ2 and κ3 respectively
express the number of fixpoints for

√
′ , of fixpoints for ′ that are not themselves

fixpoints for
√
′, and of non-fixpoints for ′ to be found in 〈k, k〉 /λ. Bearing this

interpretation in mind, we are ready to define label
√
′qMV algebras.

Definition 3 Let A = 〈A, γ, κ1, κ2, κ3〉 be a numbered MV* algebra. Let more-
over

K1 = {δ + 1 : δ < κ1} ;
K2 = {1 + κ1 + δ : δ < κ2} ;
K3 = {1 + κ1 + κ2 + δ : δ < κ3} ,

and let g, h be, respectively, an involution on K2 and a function of period 4 on
K3. A label

√
′qMV algebra on A is an algebra B =

〈
B, ⊕B,

√
′B, 0B, 1B, kB

〉
of type 〈2, 1, 0, 0, 0〉 s.t.:

• B =
⋃
a,b∈A

({〈a, b〉} × γ (a, b));

• 〈a1, b1, l1〉 ⊕B 〈a2, b2, l2〉 =
〈
a1 ⊕A a2, k

A, 0
〉
;

•
√
′B 〈a, b, l〉 =


〈
b, a′A, l

〉
, if a 6= k or b 6= k or (a = b = k and l ∈ K1)〈

b, a′A, g (l)
〉

, if a = b = k and l ∈ K2〈
b, a′A, h (l)

〉
, if a = b = k and l ∈ K3

• 0B =
〈
0A, kA, 0

〉
;

• 1B =
〈
1A, kA, 0

〉
;
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• kB =
〈
kA, kA, 0

〉
.

Observe that we omitted some angle brackets and parentheses for the sake
of notational irredundancy; accordingly, we sometimes refer to elements of B as
“triples”, with a slight linguistic abuse. Keeping in mind our previous intuitive
description of a

√
′qMV algebra Q as a subalgebra of the pair algebra ℘ (RQ)

over the MV* algebra RQ (possibly) along with an additional number of ele-
ments corresponding to non-singleton λ-cosets, every member a ∈ Q appears
in B as the triple consisting of its projections a ⊕ 0 and

√
′a ⊕ 0 and a label

uniquely characterising a within a/λ. We remark that B is defined in such a
way as to exclude triples whose first projection a and second projection b are
such that γ (a, b) = 0. Intuitively, this corresponds to the fact that, in general,
not all elements of ℘ (RQ) belong to the subalgebra Q.

We now show that the name “label
√
′qMV algebra” is not a misnomer.

Lemma 4 Every label
√
′qMV algebra is a

√
′qMV algebra.

Proof. We check only a few representative axioms, leaving the remainder of
this task to the reader and omitting all unnecessary subscripts and superscripts.

√
′
√
′ 〈a, b, l〉 ⊕ 〈0, k, 0〉 = 〈a′, b′, l∗〉 ⊕ 〈0, k, 0〉

= 〈a′, k, 0〉
=
√
′
√
′ 〈a, k, 0〉

=
√
′
√
′ (〈a, b, l〉 ⊕ 〈0, k, 0〉) .

That
√
′
√
′k = k is clear enough, while

√
′ (〈a1, b1, l1〉 ⊕ 〈a2, b2, l2〉)⊕ 〈0, k, 0〉 =

√
′ (〈a1 ⊕ a2, k, 0〉)⊕ 〈0, k, 0〉

=
〈
k, (a1 ⊕ a2)′ , 0

〉
⊕ 〈0, k, 0〉

= 〈k, k, 0〉 .

Before going on to show that every
√
′qMV algebra is isomorphic to a label√

′qMV algebra, we establish a useful auxiliary lemma.

Lemma 5 If A is a
√
′qMV algebra and a ∈ A, then the function f (x) =

√
′x

is a bijection between a/λ and
√
′a/λ.

Proof. Injectivity is clear: if
√
′b =

√
′c, then b =

√
′
√
′
√
′
√
′b =

√
′
√
′
√
′
√
′c =

c. As regards surjectivity, suppose b ∈
√
′a/λ, i.e. b⊕0 =

√
′a⊕0 and

√
′b⊕0 =

a′ ⊕ 0. Then
√
′b′ ⊕ 0 =

(√
′b⊕ 0

)′
= (a′ ⊕ 0)′ = a⊕ 0, while b′′ ⊕ 0 = b⊕ 0 =

√
′a⊕ 0, whence

√
′b′ ∈ a/λ and, clearly, f(

√
′b′) = b.

We now have to define the target structure of our representation. If Q is an
arbitrary

√
′qMV algebra, then the term subreduct RQ of regular elements is

an MV* algebra, whence

RQ= 〈RQ, γ, κ1, κ2, κ3〉

where:
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• γ (a, b) =
∣∣∣{c ∈ Q : c⊕ 0 = a and

√
′c⊕ 0 = b

}∣∣∣;
• κ1 =

∣∣∣{c ∈ Q : c⊕ 0 =
√
′c⊕ 0 = k and

√
′c = c

}∣∣∣;
• κ2 =

∣∣∣{c ∈ Q : c⊕ 0 =
√
′c⊕ 0 = k and

√
′c 6= c and c = c′

}∣∣∣;
• κ3 =

∣∣∣{c ∈ Q : c⊕ 0 =
√
′c⊕ 0 = k and c 6= c′

}∣∣∣,
is a numbered MV* algebra. The fact that κ2 (κ3) is the union of two

(four) disjoint equipotent subsets via the bijection induced by
√
′ automatically

determines an obvious involution g on K2 and a corresponding function h of
period 4 on K3, and this, in turn, according to Definition 3, univocally specifies
a label

√
′qMV algebra on RQ, which we call Bg,h

Q . We now prove that:

Theorem 6 Every
√
′qMV algebra Q is isomorphic to a label

√
′qMV algebra

Bg,h
Q on the numbered MV* algebra RQ over its own term subreduct RQ of

regular elements.

Proof. For a ∈ Q, let a/λ =
{
cj : j < γ

(
a⊕ 0,

√
′a⊕ 0

)}
, where b = c0 in

case b = b⊕ 0. If a = ci, we define ϕ (a) =
〈
a⊕ 0,

√
′a⊕ 0, i

〉
. We first have to

check that ϕ is one-one. However, if ϕ (a) = ϕ (b), we have in particular that〈
a⊕ 0,

√
′a⊕ 0

〉
=
〈
b⊕ 0,

√
′b⊕ 0

〉
, whence a/λ = b/λ. Since i = j, we get

that a = ci = cj = b. Also, ϕ is onto Bg,hQ because a generic element of Bg,hQ

has the form 〈a, b, i〉, whence γ (a, b) 6= 0 and so there exists a c ∈ Q s.t. c = ci

in
{
d ∈ Q : d⊕ 0 = a and

√
′d⊕ 0 = b

}
; clearly, ϕ (c) = 〈a, b, i〉.

It remains to check that ϕ is a homomorphism. However, applying the
appropriate

√
′qMV axioms and our stipulation that q = c0 in case q = q ⊕ 0,

ϕ
(
a⊕Q b

)
=
〈
a⊕Q b, k, 0

〉
=
〈
a⊕Q 0,

√
′a⊕Q 0, i

〉
⊕Bg,h

Q

〈
b⊕Q 0,

√
′b⊕Q 0, j

〉
= ϕ (a)⊕Bg,h

Q ϕ (b) .

In a similar fashion, we can prove that the constants are all preserved. As
regards the square root of the negation, we have to go through a case-splitting
argument. If a /∈ k/λ, we observe that by Lemma 5 the equivalence classes a/λ
and
√
′a/λ can be enumerated in such a way that a and

√
′a are assigned the

same label i. Then

ϕ
(√
′Qa
)

=
〈√
′Qa⊕Q 0, a′Q ⊕Q 0, i

〉
=
√
′B

g,h
Q

〈
a⊕Q 0,

√
′Qa⊕Q 0, i

〉
=
√
′B

g,h
Q ϕ (a) .
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In the remaining cases, we only have to make sure that the application of
ϕ gets the third component of ϕ

(√
′a
)

right, because the definition of
√
′ in

label
√
′qMV algebras is identical in all cases relatively to the first two com-

ponents. Indeed, if a ∈ k/λ and a =
√
′a = ci, then π3

(
ϕ
(√
′Qa
))

= i =

π3

(√
′B

g,h
Q ϕ (a)

)
because a is a fixpoint for

√
′, while if a ∈ k/λ, a 6=

√
′a and

a = a′ = ci, then π3

(
ϕ
(√
′Qa
))

= g (i) = π3

(√
′B

g,h
Q ϕ (a)

)
. The remaining

fourth case is handled similarly, using the function h.

3 The lattice of subvarieties of
√
′qMV

Recall that a finite  Lukasiewicz chain is of the form

 Ln+1 = ({0, 1
n
,

2
n
, . . . ,

n− 1
n

, 1},⊕,′ , 0, 1)

for n > 0 where x ⊕ y = min(1, x + y) and x′ = 1 − x. Alternatively  Ln+1 =
〈{0, 1, . . . , n},⊕,′ , 0, n〉 where x⊕y = min(n, x+y) and x′ = n−x. Let C = Z×Z
be ordered lexicographically by 〈a, b〉 < 〈c, d〉 if and only if a < b or (a = b and
c < d). The countable  Lukasiewicz chains with infinitesimals are defined by
 Ln+1,ε = 〈{x ∈ C : 〈0, 0〉 ≤ x ≤ 〈n, 0〉},⊕,′ , 〈0, 0〉 , 〈n, 0〉〉, where 〈a, b〉⊕〈c, d〉 =
min(〈n, 0〉 , 〈a+ c, b+ d〉) and 〈a, b〉′ = 〈n, 0〉 − 〈a, b〉. The elements 〈i, 0〉 are
the standard elements and the remaining elements are the infinitesimals, with
〈0, 1〉 denoted by ε. The join-irreducible MV varieties are generated by either
 Ln or  Ln,ε or the standard MV-algebra  L[0,1] = 〈[0, 1],⊕,′ , 0, 1〉, and all other
varieties are generated by finite collections of these algebras, hence there are only
countably many MV varieties [11]. The same result holds for quasi MV-algebras
[4], though the classification of subvarieties is somewhat more involved.

Although the lattice of
√
′qMV varieties was investigated in detail in [12]

and in [14], several problems concerning its structure were left open. In partic-
ular, it was conjectured that, although there are only countably many subvari-
eties of qMV, the number of

√
′qMV varieties is uncountable — however, the

above-referenced papers did not settle the issue either way. After dispatching a
mandatory recap of known results in the next subsection, we go on to fill some
gaps concerning the structure of some slices and to provide equational bases for
some interesting varieties.

3.1 Structure of the lattice

The lattice LV (
√
′qMV) of subvarieties of

√
′qMV can be depicted as in Fig.

3.1.1: the whole lattice sits upon the chain consisting of the four varieties which
contain only flat algebras: the trivial variety, its unique cover V (F100) (axioma-
tised relative to

√
′qMV by the single equation x ≈

√
′x), V (F020) (axiomatised

by x ≈ x′) and the variety of all flat algebras, F =V (F004) (axiomatised by
x⊕ 0 ≈ 0).
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Fig. 3.1.1. The lattice of subvarieties of
√
′qMV. V× and V♦ are shorthands

for, respectively, V ({Rt(A) : A ∈ VSI}) and V ({℘(A) : A ∈ VSI}).

On top of this chain, the dark grey area represents the sublattice LV (S)
of varieties generated by strongly Cartesian algebras, i.e. by

√
′qMV algebras

whose elements are either regular or coregular. The bottom of this sublat-
tice is V (Rt ( L3)), the variety generated by the smallest nontrivial (5-element)
Cartesian algebra, while its top is the variety V (S) generated by all strongly
Cartesian algebras. In general, if A is an MV* algebra, Rt (A) refers to the
strongly Cartesian algebra obtained by adjoining to A a coregular element for
every member of A − {k} (its square root of the negation); as an illustration,
Rt ( L5) is depicted in Fig. 3.1.2.

The main results we proved concerning LV (S) are listed below.

Theorem 7 V (S) is axiomatised relative to
√
′qMV by the single equation

x d
√
′x ≥ k.

Interpreted over Cartesian algebras whose regular elements are linearly or-
dered, such an equation says that any element a is either greater than or equal
to k or such that its square root of the negation is greater than or equal to
k. Because of the properties of

√
′, this is equivalent (over Cartesian algebras

with linearly ordered regular elements) to every element being either regular or
coregular.

If we define, for V a variety of MV* algebras, Rt (V) as V ({Rt(A) : A ∈V}),
it is possible to prove that:

Theorem 8 The lattice LV (MV∗) of all nontrivial MV* varieties is isomorphic
to LV (S) via the mapping ϕ(V) = Rt (V).
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1

3/4

√
′0

√
′(1/4) 1/2

√
′(3/4)

√
′1

1/4

0

Fig. 3.1.2. Rt( L5)

The light grey areas represent what we (in [12]) called “slices”, i.e. intervals
in LV (

√
′qMV) whose bottom elements are members of LV (S). By a non-flat

variety of
√
′ qMV algebras we mean a variety which contains at least an algebra

not in F (equivalently, as we have seen, a variety above or equal to V (Rt ( L3))).
We have that:

Lemma 9 A non-flat
√
′ qMV algebra A is subdirectly irreducible iff Rt(RA)

is subdirectly irreducible iff ℘(RA) is subdirectly irreducible. If V is a non-flat
variety, the varieties V, V ({Rt(RA) : A ∈ V}), and V ({℘(RA) : A ∈ V}) have
the same strongly Cartesian and flat subdirectly irreducible members.

Slices are precisely intervals of LV (
√
′qMV) of the form

[V ({Rt(A) : A ∈ VSI}) , V ({℘(A) : A ∈ VSI})],

for some variety V of MV* algebras. Every non-flat variety is contained in some
slice:

Lemma 10 Every non-flat variety V belongs to the interval

[V ({Rt(RA) : A ∈ V}) , V ({℘(RA) : A ∈ V})].

The preceding results have a noteworthy consequence: by our description of
flat varieties, as well as by Theorem 8 and Lemma 10, V (F100) is the single atom
of LV (

√
′qMV). However, the class of congruence lattices of algebras in V (F100)
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coincides with the class of all equivalence lattices over some set, whence no
nontrivial variety V in LV (

√
′qMV) satisfies any nontrivial congruence identity.

The simplest slices have the form Sn = [V (Rt( L2n+1)), V (℘( L2n+1))], for
some n ∈ N. If A ≤ ℘( L2n+1), then V (A) is join-irreducible, and, conversely,
every join-irreducible member of Sn is of the above form. Moreover, since
℘( L2n+1) is finite, by Lemma 1 all subdirectly irreducible Cartesian algebras
in V (℘( L2n+1)) belong to HS(℘( L2n+1)). Further, ℘( L2n+1) has no nontrivial
Cartesian congruences, and thus, by the relative congruence extension property
for Cartesian algebras [20], the same holds for its subalgebras. It follows that
HS above can be replaced by S. The next theorem yields a fairly complete
description of the slices Sn:

Theorem 11 The lattice Sn contains a subposet order-isomorphic to the inter-
val [Rt( L2n+1), ℘( L2n+1)] in the lattice of subalgebras of ℘( L2n+1), and is itself
isomorphic to the lattice of order ideals of the poset P+(n2) of all nonempty
subsets of a set with n2 elements.

3.2 There are uncountably many subvarieties of
√
′qMV

In this subsection we first show that the top slice of the lattice of subvarieties
of
√
′qMV, whose bottom element is V

(
Rt
(
MV[0,1]

))
and whose top element

is the whole of
√
′qMV, contains uncountably many elements. Subsequently, we

prove that we do not have to wait until we reach the top slice in order to find
an uncountable one: there are uncountably many varieties of

√
′qMV algebras,

even if we restrict ourselves to varieties generated by algebras obtained from
 Lukasiewicz chains with infinitesimals.

Recall that in [14] appropriate
√
′qMV terms χ〈a,b〉i (x) (1 ≤ i ≤ 4) were used

with the property that, if 〈a, b〉 and 〈c, d〉 are elements of Sr,

Lemma 12 1. χ〈a,b〉1 (〈c, d〉) 6= 1 iff c < a and d < b,

2. χ〈a,b〉2 (〈c, d〉) 6= 1 iff c < a and d > b,

3. χ〈a,b〉3 (〈c, d〉) 6= 1 iff c > a and d > b,

4. χ〈a,b〉4 (〈c, d〉) 6= 1 iff c > a and d < b.

In particular, if a, b, c, d ∈ [0, 1], the χ〈a,b〉i ’s have the following form, for some
MV terms2 λa, λb, ρa, ρb:

• χ〈a,b〉1 (x) = λa(x) d λb(
√
′x)

• χ〈a,b〉2 (x) = λa(x) d ρb(
√
′x)

• χ〈a,b〉3 (x) = ρa(x) d ρb(
√
′x)

2Actually, unbeknownst to us, the terms λa, λb, ρa, ρb had been defined, although in a
different notation, by Aguzzoli [1], to whom it is fair to credit their introduction.
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• χ〈a,b〉4 (x) = ρa(x) d λb(
√
′x)

A rather obvious geometric intuition for visualising the terms χ〈a,b〉i (x) is
that each of these defines its own rejection rectangle, consisting of all points
u ∈ Sr that falsify χ

〈a,b〉
i (u) = 1 (Fig. 3.2.1). More precisely, these rectangles

are as follows:

• for χ〈a,b〉1 (u), the lower left-hand corner is 〈0, 0〉 and the upper right-hand
corner is 〈a, b〉,

• for χ〈a,b〉2 (u), the upper left-hand corner is 〈0, 1〉 and the lower right-hand
corner is 〈a, b〉,

• for χ〈a,b〉3 (u), the upper right-hand corner is 〈1, 1〉 and the lower left-hand
corner is 〈a, b〉,

• for χ〈a,b〉4 (u), the lower right-hand corner is 〈1, 0〉 and the upper left-hand
corner is 〈a, b〉.

Fig. 3.2.1. Rejection rectangle for χ〈a,b〉1 (x). 〈c, d〉 is in the rectangle iff
χ
〈a,b〉
1 (〈c, d〉) 6=

〈
1, 1

2

〉
.

Using these terms, we can show that:

Theorem 13 The top slice in LV (
√
′qMV) contains uncountably many vari-

eties.

Proof. Consider the line segment with endpoints
〈
0, 1

2

〉
,
〈

1
2 , 0
〉

in Sr, and let
〈a0, ..., ak, ...〉 be any countable sequence of points in the segment converging to
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〈
1
2 , 0
〉
. For X ⊆ N , let AX be the smallest subalgebra of Sr which includes

Rt
(
MV[0,1]

)
and contains {ak : k ∈ X}. It will suffice to show that, if X 6= Y ,

then AX and AY generate different varieties. In fact, if X 6= Y , then w.l.g.
there will be an aj ∈ AX which does not belong to AY . Since the sequence
〈a0, ..., ak, ...〉 is countable, there will be some neighbourhood N of aj (in the
standard Euclidean topology of the plane) and some b ∈ N such that b is
point-wise greater than aj and has the property that the rejection rectangle
associated with the term χb1(x) includes aj but no other ak, for k 6= j. Therefore,
AY � χb1(x) ≈ 1, but AX 2 χb1(x) ≈ 1, for χb1(aj) 6= 1.

We now show that uncountability is not restricted to the top slice. Let

tn(x) = (((n+ 1)x)′ ⊕
√
′x) d (nx⊕ (

√
′x)′) d 2x d 2

√
′x,

where the notation nx is defined by 0x = 0 and nx = x ⊕ (n − 1)x for n > 0.
For each set S of positive integers we define a subalgebra of ℘( L3ε) by

AS = Rt( L3ε)∪{〈2ε, jε〉 , 〈jε, (2ε)
′〉 , 〈(2ε)′, (jε)′〉 , 〈(jε)′, 2ε〉 : j = 2i+1 for i ∈ S}

Theorem 14 Let S, T be two distinct sets of positive integers.

1. AS |= tn(x) ≈ 1 if and only if n /∈ S;

2. V (AS) 6= V (AT ).

Proof. (1) Note that AS 6|= tn(x) ≈ 1 is equivalent to 2c 6= 1, 2
√
′c 6= 1,

((n + 1)c)′ ⊕
√
′c 6= 1 and nc ⊕ (

√
′c)′ 6= 1 for some c ∈ AS . The first two

inequations ensure that xAS = 〈a, b〉 for some a, b < k = 1
2 , hence a = 2ε and

b = jε for some j = 2i+ 1 where i ∈ S.
So, ((n+ 1) 〈a, b〉)′⊕

√
′ 〈a, b〉 =

〈
1− (n+ 1)a, 1

2

〉
=
〈
min(1, 1− (n+ 1)a+ b, 1

2

〉
6=

1 if and only if 1 − (n + 1)a + b < 1, which is equivalent to b < (n + 1)a, i.e.,
jε < 2(n+ 1)ε, so 2i+ 1 ≤ 2n+ 1, hence i ≤ n.

Similarly n(a, b) ⊕ (
√
′ 〈a, b〉)′ =

〈
na, 1

2

〉
⊕ 〈1− b, a〉 6= 1 if and only if na +

1 − b < 1, or equivalently 2nε < (2i + 1)ε, hence n ≤ i. It follows that the
identity tn(x) ≈ 1 fails in AS precisely when n = i for some i ∈ S.

(2) is an immediate consequence of (1), since either n ∈ S \ T or n ∈ T \ S,
so the identity tn(x) ≈ 1 distinguishes the two varieties.

The proof given above can be adapted to subalgebras of ℘( L2m+1,ε).

Corollary 15 For m > 0 the lattice of subvarieties of V (℘( L2m+1,ε)) is un-
countable.

Although the  L3ε-slice contains uncountably many varieties, it is possible to
describe parts of the poset of join-irreducible varieties near the bottom of the
slice. For a finite set S ⊆ N , let

BS = Rt( L3ε) ∪ {〈iε, 0〉 , 〈0, (iε)
′〉 , 〈(iε)′, 1〉 , 〈1, iε〉 : i ∈ S}

Theorem 16 Let S, T be finite subsets of N . Then V (BS) ⊆ V (BT ) if and
only if there is a positive integer m such that {mn : n ∈ S} ⊆ T .

11



Proof. For the forward implication, let y0, y1, . . . be a sequence of distinct
variables, let M = max(T ), assume V (BS) ⊆ V (BT ) and consider the equation

eS :
∨
n∈S

[
(
((nx! yn)M )′ ⊕ y′n

)
d 2yn d 2

√
′yn] ≈ 1,

where x! y = (x′ ⊕ y)e (y′ ⊕ x) and
∨

generalises d to finitely but otherwise
arbitrarily many arguments. Note that eS fails in BS since if we let xBS = 〈ε, 0〉
and yBS

n = 〈nε, 0〉 then each of the terms in the join gives a value strictly less
than 1. Therefore eS also fails in BT for some assignment to the variables. From
2yBT
n < 1 and 2

√
′yBT
n < 1 we deduce that the yn are assigned irregular elements,

hence for all n ∈ S, yBT
n = 〈qnε, 0〉 for some qn ∈ T . Moreover, xBT = 〈mε, 0〉 or

xBT =
〈
mε, 1

2

〉
for m > 0, since in all other cases the term ((nx! yn)M )′⊕y′n

evaluates to 1. In addition ((nxBT ! yBT
n )M )′⊕ (yBT

n )′ < 1 implies (nxBT !
yBT
n )M 6≤ (yBT

n )′ ⊕ 0. If nxBT ! yBT
n < 1 then nxBT ! yBT

n ≤ 〈ε, 1
2 〉
′,

hence (nxBT ! yBT
n )M ≤ 〈(Mε)′ , 1

2 〉 ≤ yBT ′
n ⊕ 0, a contradiction. Therefore

nxBT ! yBT
n = 1, whence nmε = qnε. Since qn ∈ T for all n ∈ S, we conclude

that {mn : n ∈ S} ⊆ T .
For the reverse implication, suppose {mn : n ∈ S} ⊆ T for some m >

0. Define the map h : BS → BT by h(〈iε, jε〉) = 〈miε,mjε〉, and extend it
homomorphically to all of BS . This map is always an embedding on the regular
and coregular elements of BS , and by assumption 〈mi, 0〉 ∈ BT for all i ∈ S,
whence the map is also an embedding on the irregular elements. Therefore
BS ∈ V (BT ), as required.

Note that the above result implies that V (BS) and V (BT ) are distinct if
S 6= T , but this property does not hold for infinite sets S, T in general. For
example if S = N \ {0} and T = N then BS is a subalgebra of BT , and BT is
a homomorphic image of any nonprincipal ultrapower of BS , hence V (BS) =
V (BT ). Similarly the top variety of the  L3ε-slice, which is generated by the
pair algebra ℘( L3ε), is also generated by the subalgebra obtained by removing
the 4 “corners” 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, or indeed, by removing any finite set
of irregular points that is invariant under

√
′.

3.3 Equational bases for some subvarieties

In [12, 14] the lattice LV (
√
′qMV) was described to some extent, but — differ-

ently from what had been done for LV (qMV) in [4] — no equational bases were
given for individual subvarieties. Here, we provide such bases at least for some
reasonably simple cases. We start with an easy task: axiomatising the varieties
generated by strongly Cartesian algebras. By Theorem 8 every such variety is
the rotation of some variety of MV* algebras.

Lemma 17 Let V be a variety of MV* algebras whose equational basis w.r.t.
MV∗ is E. Then Rt (V) is axiomatised relative to

√
′qMV by E and the strongly

Cartesian equation (
x d
√
′x
)
⊕ k ≈ 1.

12



Proof. From left to right, Rt (A) ∈ Rt (V) is a
√
′qMV algebra which satisfies(

x d
√
′x
)
⊕ k ≈ 1 by Theorems 7 and 8. Moreover, since E can be taken to be

a set of normal MV* equations3 by results in [7, Chapter 8], A will satisfy E as
a qMV algebra, whence it will satisfy these equations altogether. Conversely,
let A be a s.i.

√
′qMV algebra which satisfies both E and

(
x d
√
′x
)
⊕ k ≈ 1.

Being subdirectly irreducible, it is either Cartesian or flat. If the latter, then
A ∈ Rt (V) because flat algebras are contained in every variety generated by
strongly Cartesian algebras. If the former, then its MV* term subreduct RA is
also subdirectly irreducible and, therefore, linearly ordered. As a consequence,
the axiom

(
x d
√
′x
)
⊕k ≈ 1 expresses the fact that any element is either above

k or such that its own square root of the negation is above k. It follows that
A = Rt (B) for some MV* algebra B. Since A satisfies E , however, B (having
fewer elements) also satisfies it and thus A ∈ Rt (V).

By Theorem 11, each slice whose bottom element is the variety generated
by the rotation Rt ( L2n+1) of a single finite  Lukasiewicz chain  L2n+1, and whose
top element is the variety generated by the full pair algebra ℘ ( L2n+1), has
exactly 2n

2
join irreducible elements, one for each set of irregular elements in

any one “quadrant” of ℘ ( L2n+1). We are now going to give explicit equational
bases for all of them. For this purpose, it will be expedient to identify their
generating algebras with subalgebras of Sr. If we do so, each meet and join
irreducible variety in any such slice can be identified with the variety generated
by the algebra Ap, obtained by removing from ℘ ( L2n+1) exactly the point
p =

〈
m1
2n ,

m2
2n

〉
, together with

√
′p, p′,

√
′p′. With no loss of generality, of course,

p can be taken to reside in the first quadrant, i.e. m1,m2 ∈ {0, . . . , n− 1}.

Theorem 18 If E axiomatises V ( L2n+1) relative to MV∗, then V (Ap) is ax-
iomatised relative to

√
′qMV by E as well as tp (x) ≈ 1, where

tp (x) = χ
〈m1+1

2n ,
m2+1

2n 〉
1 (x) d χ〈

m1−1
2n ,

m2−1
2n 〉

3 (x).

Proof. After observing that the term tp (x) can be further unwound as

λm1+1
2n

(x) d ρm1−1
2n

(x) d λm2+1
2n

(
√
′x) d ρm2−1

2n

(
√
′x),

our proof goes through a number of claims.

Claim 19 In the standard MV* algebra MV[0,1], λm1+1
2n

(a) d ρm1−1
2n

(a) < 1 iff

a ∈
(
m1−1

2n , m1+1
2n

)
.

In fact, by Lemma 15 in [14], λm1+1
2n

(a) = 1 iff a > m1+1
2n , while ρm1−1

2n

(a) = 1

iff a < m1−1
2n . Therefore, the indicated join is 1 exactly for the points that

lie outside of the open interval
(
m1−1

2n , m1+1
2n

)
. Now the following claims are

immediate consequences of Claim 19:
3Recall that an equation t ≈ s (of a given type) is said to be normal iff either t and s are

the same variable or else neither t nor s is a variable [6].
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Claim 20 In Sr, λm1+1
2n

(a) d ρm1−1
2n

(a) < 1 iff a ∈
(
m1−1

2n , m1+1
2n

)
.

Claim 21 In Sr, tp (a) < 1 iff a belongs to the open square with centre p and
radius 1

2n .

Having established these claims, it follows that Ap satisfies tp (x) ≈ 1, while
any subdirectly irreducible Cartesian algebra in the slice satisfying tp (x) ≈ 1
must be a subalgebra of ℘( L2n+1) in the light of the remarks preceding Lemma
11 and at the same time exclude the point p, i.e. be a subalgebra of Ap.

Corollary 22 An arbitrary join irreducible variety V (A) in the slice whose
bottom element is V (Rt ( L2n+1)) is axiomatised relative to

√
′qMV by E as well

as {tp (x) ≈ 1 : p /∈ A}, where p =
〈
m1
2n ,

m2
2n

〉
for m1,m2 ∈ {0, . . . , n− 1}.

4
√
′qMV has the amalgamation property

An amalgam is a tuple 〈A, f,B, g,C〉 such that A,B,C are structures of the
same signature, and f : A→ B, g : A→ C are embeddings (injective mor-
phisms). A class K of structures is said to have the amalgamation property if
for every amalgam with A,B,C ∈ K and A 6= ∅ there exists a structure D ∈ K
and embeddings f ′ : B→ D, g′ : C→ D such that f ′ ◦ f = g′ ◦ g. A couple of
decades ago, Mundici proved that MV algebras have the amalgamation property
[19], and his result was extended to the variety qMV in [4]. In the same paper it
was proved that both Cartesian and flat

√
′ qMV algebras amalgamate, but the

property was not established for the entire variety of
√
′qMV algebras, although

it was to be expected that it would hold. Since taking this further step is not
completely trivial, we answer the question in the affirmative in this subsection.

Theorem 23 The variety of
√
′qMV algebras enjoys the amalgamation prop-

erty.

Proof. Let A,B,C be
√
′qMV algebras such that:

B

A

f

>>~~~~~~~~~

g

  @@@@@@@@@

C
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where f, g are embeddings. By the Third isomorphism theorem and the repre-
sentation theorem for

√
′qMV algebras the following diagram commutes:

B // B/λ×B/µ

A

f

??���������

g

��>>>>>>>>>
// A/λ×A/µ

88ppppppppppppp

&&NNNNNNNNNNNNN

C // C/λ×C/µ

(1)

But Cartesian and flat
√
′qMV algebras possess the amalgamation property.

Therefore there exist a Cartesian algebra DC , and a flat algebra DF such that
the following is commutative:

B/λ×B/µ

&&MMMMMMMMMMMMM

A/λ×A/µ

88ppppppppppppp

&&NNNNNNNNNNNNN DC ×DF

C/λ×C/µ

88qqqqqqqqqqqqq

(2)

Thus, combining the previous two diagrams, we see that DC ×DF amalga-
mates 〈A, f,B, g,C〉.

5 The 1-assertional logic of
√
′qMV

Recall that the 1-assertional logic [3] of a class K of similar algebras of type ν
(containing at least one constant 1) is the logic whose language is ν and whose
consequence relation `K is defined for all Γ ∪ {α} ⊆ For (ν) as follows:

Γ `K α if and only if {γ ≈ 1 : γ ∈ Γ} �K α ≈ 1,

where �K is the equational consequence relation of the class K. Although this
consequence relation need not, in general, be finitary [8], it can be forced to be
such by changing its definition into

Γ `K α iff there is a finite Γ′ ⊆ Γ s.t. {γ ≈ 1 : γ ∈ Γ′} �K α ≈ 1.

Hereafter, we will adopt the latter definition of 1-assertional logic. Since we will
deal with logics on the same language, we will also identify logics with their
associated consequence relation, with a slight linguistic abuse.
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Among the several abstract logics related to
√
′qMV that were introduced

and motivated in [21], there were the 1-assertional logics `√′qW of the variety
√
′qW (a term equivalent variant of

√
′qMV in the language

{
→,
√
′, 0, 1

}
, where

x → y = x′ ⊕ y) and `CW of the quasivariety CW of Cartesian algebras (also
formulated in the same language; W stands for Wajsberg algebras). Such logics
differ profoundly from each other as regards their abstract algebraic logical
properties. For example, while the latter is a regularly algebraisable logic whose
equivalent algebraic semantics is CW, the former is not even protoalgebraic. The
above-referenced paper provides an axiomatisation of `CW that streamlines the
algorithmic axiomatisation obtained from the standard axiomatic presentation
of the relatively point regular quasivariety CW by the Blok-Pigozzi method [2],
as well as a characterisation of its deductive filters. For the non-protoalgebraic
logic `√′qW, the axiomatisation problem is not trivial and cannot be tackled
by standard methods, since we cannot construct anything like the Lindenbaum
algebra of the logic. The aim of the present section is giving an answer to this
problem.

For a start, since CW is a subquasivariety of
√
′qW, we observe that:

Lemma 24 If α1, ..., αn `√′qW α, then α1, ..., αn `CW α.

We also recall the following lemma, first proved in [21]. Here and in the se-

quel,
√
′(n)

α is inductively defined by
√
′(0)

α = α and
√
′(m+1)

α =
√
′
(√
′(m)

α
)

.

Lemma 25 α1, ..., αn `√′qW
√
′(m)

p iff at least one of the following conditions
hold:

1. For some integer k ≡ m (mod 4)
√
′(k)

p ∈ {α1, ..., αn};

2. For some integer k 6≡ m (mod 4)
√
′(k)

p ∈ {α1, ..., αn} and α1, ..., αn `CW
0.

The next result shows that although the converse of Lemma 24 need not be
true in general, we can nonetheless infer some information from its premiss.

Lemma 26 α1, ..., αn `CW α iff α1, ..., αn `√′qW α↔ 1, where

α↔ β = (α→ β)⊗ (β → α)⊗
(√
′α→

√
′β
)
⊗
(√
′β →

√
′α
)

.

Proof. Left to right. Suppose α1, ..., αn `CW α, and let A be a
√
′ qW algebra.

Suppose further that −→a ∈ Ai, where i is the number of variables in the indicated
formulas, and that αA

1 (−→a ) = ... = αA
n (−→a ) = 1. Now, the quotient A/λ

is a Cartesian algebra, whence our hypothesis that α1, ..., αn `CW α implies
αA/λ (−→a /λ) = 1A/λ, i.e. αA (−→a )λ1. Unwinding this statement, we get that

αA (−→a )→ 1 = 1→ αA (−→a ) =
√
′αA (−→a )→

√
′1 =

√
′1→

√
′αA (−→a ) = 1,
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and so αA (−→a )↔ 1 = 1.
Right to left. Suppose α1, ..., αn `√′qW α ↔ 1, and let A be a Cartesian

algebra. Suppose further that −→a ∈ Ai, and that αA
1 (−→a ) = ... = αA

n (−→a ) = 1.
Since A is in particular a

√
′ qW algebra, αA (−→a ) ↔ 1 = 1 and, since the

immediate subformulas of α↔ 1 are all regular,

αA (−→a )→ 1 = 1→ αA (−→a ) =
√
′αA (−→a )→

√
′1 =

√
′1→

√
′αA (−→a ) = 1.

This means 1 → αA (−→a ) = 1 and 1 →
√
′αA (−→a ) = 1 →

√
′1; since A is

Cartesian, αA (−→a ) = 1.
An immediate consequence of the above lemma is:

Corollary 27 α1, ..., αn `CW 0 iff α1, ..., αn `√′qW 0.

Lemma 28 For m ≥ 0, α1, ..., αn `√′qW
√
′(m)

(α→ β) iff α1, ..., αn `CW
√
′(m)

(α→ β).

Proof. The left-to-right direction follows from Lemma 24. For the converse
direction, suppose α1, ..., αn `CW

√
′(m)

(α→ β) and let A be a
√
′ qW algebra.

Suppose further that −→a ∈ Ai, and that αA
1 (−→a ) = ... = αA

n (−→a ) = 1. By Lemma

26,
√
′(m)

(α→ β) (−→a )↔ 1 = 1; in full,(
1→

√
′(m)

(α→ β) (−→a )
)
⊗
(√
′(m)

(α→ β) (−→a )→ 1
)
⊗(√

′1→
√
′(m+1)

(α→ β) (−→a )
)
⊗
(√
′(m+1)

(α→ β) (−→a )→
√
′1
)

= 1,

and so the immediate subformulas of the preceding formula, being regular,
all evaluate to 1. Now, if m is odd, from 1 →

√
′(m)

(α→ β) (−→a ) = 1 we get

1 = k. In other words A is flat, whence
√
′(m)

(α→ β) (−→a ) = 1. If m is even,
then either 1→ (α→ β) (−→a ) = 1 or 1→ (α→ β)′ (−→a ) = 1, which respectively
imply either (α→ β) (−→a ) = 1 or (α→ β)′ (−→a ) = 1.

Corollary 29 `√′qW and `CW have the same theorems.

Proof. From Lemma 28, since all the theorems of `CW have the form
√
′(m)

(α→ β),
for some m ≥ 0. It is also a consequence of the fact that CW and

√
′qW satisfy

the same equations [9].
The next Theorem gives a complete characterisation of the vaild entailments

of `√′qW.

Theorem 30 α1, ..., αn `√′qW α iff at least one of the following conditions
hold:

1. α =
√
′(m)

(β → γ) (for some formulas β, γ and some m ≥ 0) or α = 0 or
α = 1, and α1, ..., αn `CW α;
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2. α =
√
′(m)

p (for some m ≥ 0) and for some integer k ≡ m (mod 4)
√
′(k)

p ∈ {α1, ..., αn};

3. α =
√
′(m)

p (for some m ≥ 0) and for some integer k 6≡ m (mod 4)
√
′(k)

p ∈ {α1, ..., αn} and α1, ..., αn `CW 0.

Proof. From Lemmas 25 and 28. For the cases α = 0 or α = 1, use Corollaries
29 and 27.

We are now going to define a Hilbert system whose syntactic derivability
relation will prove to be equivalent to `√′qW. This system is both an expansion
and a rule extension of the Hilbert system q L for the logic of quasi-Wajsberg
algebras introduced in [5], and the techniques used to prove completeness are
heavily indebted to the tools adopted in the mentioned paper.

Definition 31 The deductive system `√′q  L, formulated in the signature
〈
→,
√
′, 1, 0

〉
,

has the following postulates:

A1. α→ (β → α) A2. (α→ β)→ ((β → γ)→ (α→ γ))
A3. ((α→ β)→ β)→ ((β → α)→ α) A4. (α′ → β′)→ (β → α)

A5. 1 A6.
√

′α→
√

′β, for α, β regular form.

A7.
“

1→
√

′ (α→ β)
”
↔
√

′
“

1→
√

′ (α→ β)
”

qMP. 1→ α, 1→ (α→ β)` 1→ β

Areg1. 1→
√

′(m)
(α→ β)`

√
′(m)

(α→ β) (0 ≤ m ≤ 3) Areg2. 1→ 0 ` 0
Reg. α ` 1→ α Inv. α a` α′′

Flat. α, 0 `
√

′α GR. α, β `
√

′α→
√

′β

Lemma 32 The Cartesian logic `CW, as axiomatised in [21], is the rule exten-
sion of `√′q  Lby the rule

MP∗. α, α→ β,
√
′α→

√
′β,
√
′β →

√
′α ` β.

Proof. For the sole missing axiom, observe that by (Flat)
√
′α, 0 ` α′ and

α, 0 `
√
′α, whence by (Cut) we have our conclusion.

The next lemma will prove very useful in the sequel and will be mostly
employed without special mention.

Lemma 33 If α1, ..., αn `W α and α1, ..., αn, α are regular formulas, then α1, ..., αn `√′q  L

α.

Proof. From the assumptions α1, ..., αn, by (Reg) we conclude 1→ α1, ..., 1→
αn, whence there is a proof in `√′q L of 1 → α using (qMP). Our claim follows
then by (Areg1-2).

We now need a syntactic analogue of one direction in Lemma 26.

Lemma 34 If α1, ..., αn `CW α then α1, ..., αn `√′q  L α↔ 1.
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Proof. In consideration of Lemma 32, we proceed by induction on the derivation
of α from α1, ..., αn, in the Hilbert system given in the same lemma.

If α is an axiom, then it is both a `√′q L axiom and a regular formula, whence√
′α →

√
′1 and

√
′1 →

√
′α are both `√′q L-provable by (GR), while 1 → α is

`√′q L-provable by (Reg). Since α → 1 is `√′q L-provable by the completeness
theorem for the subsystem q L, we conclude that the conjunction of regular
formulas α↔ 1 is also such.

Now, let α = 1 → β be obtained from α1, ..., αn−1, β by the rule (Reg).
We have to prove that α1, ..., αn−1, β `√′q L (1→ β) ↔ 1. However, as already
noticed (1→ β) → 1 is `√′q L-provable, while 1 → (1→ β) is obtained from
β by two applications of (Reg).

√
′ (1→ β) →

√
′1 and its converse are `√′q L-

provable by (A6), whence we obtain our conclusion. The rules (Areg1-2), (qMP)
and (GR) are dispatched similarly.

Let α =
√
′β be obtained from α1, ..., αn−1, β, 0 by the rule (Flat). We have

to prove that α1, ..., αn−1, β, 0 `√′q L

√
′β ↔ 1, where, in full,

√
′β ↔ 1 =

(√
′β → 1

)
⊗
(

1→
√
′β
)
⊗
(
β′ →

√
′1
)
⊗
(√
′1→ β′

)
.

However, (i)
√
′β → 1 is `√′q L-provable by the completeness theorem for the

subsystem q L; (ii) 1 →
√
′β can be derived from β, 0 by (Flat) and (Reg); (iii)

from β, 0 we get
√
′β by (Flat) and then β′ →

√
′1 and

√
′1 → β′ by (A5) and

(GR). The rule (Inv) is dispatched similarly.
Finally, let α = β be obtained from α1, ..., αn−4, γ, γ → β,

√
′γ →

√
′β,
√
′β →√

′γ by the rule (MP*). By induction hypothesis,

α1, ..., αn−4 `√′q L γ ↔ 1, (γ → β)↔ 1,
(√
′γ →

√
′β
)
↔ 1,

(√
′β →

√
′γ
)
↔ 1.

We must show that α1, ..., αn−4, γ, γ → β,
√
′γ →

√
′β,
√
′β →

√
′γ `′√′q L

β ↔ 1, where, in full,

β ↔ 1 = (β → 1)⊗ (1→ β)⊗
(√
′β →

√
′1
)
⊗
(√
′1→

√
′β
)

.

However, (i) β → 1 is `√′q L-provable by the completeness theorem for the
subsystem q L; (ii) applying (Reg) to the premisses γ, γ → β we obtain 1 →
γ, 1→ (γ → β), whence 1→ β follows by (qMP); (iii) our induction hypothesis4

yields 1 →
(√
′β →

√
′γ
)

, whence
√
′β →

√
′γ follows from (Areg1). By ind.

hyp. again, we obtain
√
′γ →

√
′1, whence by transitivity (legitimate by Lemma

33) we conclude
√
′β →

√
′1. For

√
′1→

√
′β we argue similarly.

Lemma 35
√
′(m)

(α→ β)↔ 1 `√′q  L

√
′(m)

(α→ β) for all m ≥ 0.

4Observe that the (MP*) step is the only locus in our proof where the inductive hypothesis
is actually used.
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Proof. From our hypothesis we deduce 1 →
√
′(m)

(α→ β), whence our con-
clusion follows by (Areg1).

Lemma 36 If α1, ..., αn `CW 0 then α1, ..., αn `√′q  L 0.

Proof. By Lemma 34, if α1, ..., αn `CW 0 then α1, ..., αn `√′q L 0 ↔ 1, whence
we deduce 1→ 0 and then 0 by (Areg2).

We are now ready to establish the main result of this section.

Theorem 37 α1, ..., αn `√′q  L α iff α1, ..., αn `√′qW α.

Proof. From left to right, we proceed through a customary inductive argument.
Conversely, suppose that α1, ..., αn `√′qW α. Then, at least one of the conditions
(1)-(3) in Theorem 30 obtains.

If (1) holds, then either α =
√
′(m)

(β → γ) for some formulas β, γ and some

m ≥ 0, or α = 0 or α = 1; moreover, α1, ..., αn `CW α. If α =
√
′(m)

(β → γ), by

Lemma 34 α1, ..., αn `√′q L

√
′(m)

(β → γ) ↔ 1, whence our conclusion follows
applying Lemma 35. If α = 0 we reach the same conclusion by Lemma 36, while
if α = 1 (A5) suffices.

If (2) holds, we must show that α1, ..., αn−1,

√
′(k)

p `√′q L

√
′(m)

p. Since
k ≡ m (mod 4), either k = m (and so there is nothing to prove) or our conclusion
can be attained by (Inv).

Finally, if (3) holds, we can assume that α1, ..., αn−1,

√
′(k)

p `CW 0. To show

that α1, ..., αn−1,

√
′(k)

p `√′q L

√
′(m)

p, we apply Lemma 36 to get

α1, ..., αn−1,

√
′(k)

p `√′q L 0,

whence by (Flat) α1, ..., αn−1,

√
′(k)

p `√′q L

√
′(k+1)

p. From here, we proceed to
our conclusion by as many applications of (Flat) and (Inv) as needed.

6 Cartesian
√
′qMV algebras and Abelian PR-

groups

Abelian PR-groups were defined in [10] as an expansion of Abelian `-groups by
two operations P,R that for C behave like a projection onto the first coordinate
and a clockwise rotation by π/2 radians. It was proved that: a) every Cartesian√
′ quasi-MV algebra is embeddable into an interval in a particular Abelian PR-

group; b) the category of pair algebras is equivalent both to the category of such
`-groups (with strong order unit), and to the category of MV algebras. As a
byproduct of these results a purely group-theoretical equivalence was obtained,
namely between the mentioned category of Abelian PR-groups and the category
of Abelian `-groups (both with strong order unit).
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Although these results shed some light on the geometrical structure of Carte-
sian
√
′qMV algebras, as well as on their relationships with better known classes

of algebras, they suffer from a shortcoming. In fact, the classes of objects in
the above-mentioned categories do not form varieties, whence the connection
between these theorems and the general theory of categorical equivalence for
varieties [18] remains to some extent unclear. In particular, the fact that pair
algebras are generated by Sr does not translate automatically into the fact that
the variety of Abelian PR-groups is generated by the standard PR-group over
the complex numbers. Here we prove a categorical equivalence for a larger
variety of negation groupoids with operators, which includes Abelian groups
and Abelian `-groups. This result restricts to an equivalence between Abelian
`-groups and Abelian PR-groups, whence we can derive that the complex num-
bers actually generate the latter variety.

Definition 38 An operator with respect to the signature 〈+, 0〉 is an n-ary
operation f that satisfies the identities

f(x1, . . . , xi + yi, . . . , xn) ≈ f(x1, . . . , xi, . . . , xn) + f(x1, . . . , yi, . . . , xn)

and f(0, 0, . . . , 0) ≈ 0.

Definition 39 A negation groupoid with operators is an algebra A = 〈A,+, 0,−, f1, f2, . . . 〉
such that the identities x + 0 ≈ 0 + x ≈ x, −(−x) ≈ x are satisfied and
−, f1, f2, . . . are operators. A projection-rotation groupoid with operators, or
PR-groupoid for short, is a negation groupoid with operators 〈A,+, 0,−, f1, f2, . . . , P,R〉
(so P,R are also operators) such that the following identities hold for all x, x1, . . . , xn ∈
A and i = 1, 2, . . . :

1. P (−x) = −P (x)

2. Pfi(x1, . . . , xn) = fi(P (x1), . . . , P (xn))

3. PP (x) = P (x)

4. RR(x) = −x

5. PR(fi(x1, . . . , xn)) = fi(PR(x1), . . . , PR(xn))

6. PRP (x) = 0

7. P (x) +−RPR(x) = x

Every negation groupoid A with operators gives rise to a PR-groupoid
F (A) = 〈A×A,+, 〈0, 0〉,−, f1, f2, . . . , P,R〉 where +,−, fi are defined point-
wise, P (〈a, b〉) = 〈a, 0〉 and R(〈a, b〉) = 〈b,−a〉. The operator identities and
(1)-(5) are clearly satisfied, and checking (6), (7) is simple: PRP (〈a, b〉) =
P (〈0,−a〉) = 〈0, 0〉, while

P (〈a, b〉) +−RPR(〈a, b〉) = 〈a, 0〉+−R(〈b, 0〉) = 〈a, 0〉+ 〈0, b〉 = 〈a, b〉.
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Theorem 40 Given a PR-groupoid A = 〈A,+, 0,−, f1, f2, . . . , P,R〉, define
G(A) = 〈P (A),+, 0,−, f1, f2, . . . 〉. Then G(A) is a negation groupoid with
operators, and the maps e : A → FG(A) given by e(x) = 〈P (x), PR(x)〉 and
d : B → FG(B) given by d(x) = 〈x, 0〉 are isomorphisms. Moreover F , G are
functors that give a categorical equivalence between the algebraic categories of
negation groupoids with operators and PR-groupoids.

Proof. e(x + y) = 〈P (x + y), PR(x + y)〉 = e(x) + e(y) and e(0) = 〈0, 0〉
since P,R are operators. Similarly e(−x) = −e(x) and e(fi(x1, . . . , xn)) =
fi(e(x1), . . . , e(xn)) follow from (1), (2), (5). The homomorphism property for
P , R is computed by

e(P (x)) = 〈PP (x), PRP (x)〉 = 〈P (x), 0〉 = P (〈P (x), PR(x)〉) = P (e(x))
e(R(x)) = 〈PR(x), PRR(x)〉 = 〈PR(x),−P (x)〉 = R(〈P (x), PR(x)〉) = R(e(x)).

If e(x) = e(y) then P (x) = P (y) and PR(x) = PR(y), so (7) implies x = y,
whence e is injective. Given 〈P (x), P (y)〉 ∈ FG(A), let z = P (x) +R(−P (y)).
Then

e(z) = 〈PP (x) + PR(−P (y)), PRP (x) + PRR(−P (y))〉
= 〈P (x) +−PRP (y), PP (y)〉
= 〈P (x), P (y)〉

hence e is surjective. Similarly, checking that d is an isomorphism of negation
groupoids with operators is straightforward.

For a homomorphism h between negation groupoids with operators, we de-
fine a homomorphism between the corresponding PR-groupoids by F (h)(〈a, b〉) =
〈h(a), h(b)〉. Likewise for a homomorphism h between PR-groupoids, let G(h)
be the restriction of h to the image of P , then G(h) is a homomorphism of
negation groupoids with operators. Moreover, it is easy to check that F,G are
functors.

Corollary 41 The varieties of negation groupoids with operators and PR-groupoids
are categorically equivalent. The equivalence restricts to Abelian `-groups and
Abelian PR-groups, whence the variety of Abelian PR-groups is generated by
〈C,∧,∨,+,−, 0, P,R〉, where 〈C,∧,∨,+,−, 0〉 is the `-group of the complex
numbers (considered as R2), and P , R are defined by:

P (〈a, b〉) = 〈a, 0〉 ;
R (〈a, b〉) = 〈b,−a〉 .

We note that this result does not apply (in the current form) to non-Abelian
(`-)groups since the assumption that − is an operator in a group implies that
+ is commutative.
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